Using cutting-edge science to address real world challenges

With 37 instruments optimised for a wide range of applications, ISIS, a multidisciplinary research facility belonging to STFC, provides possible solutions to some of the greatest challenges facing humanity. The neutrons generated by ISIS are used to provide information on atomic structure and behaviour, the keys to understanding why materials have the properties they do, and how they can be improved. Othe other hand, our Central Laser Facility (CLF), based at the Rutherford Appleton Laboratory, is one of the world’s leading laser facilities, with an array of applications. It has a range of lasers with different uses. We can use it to accelerate subatomic particles to high energies, probe chemical reactions and study biochemical and biophysical processes. 1. Security The world is on high alert for potential terrorist attacks and security is a top priority. Detecting explosives and biochemical hazards and investigating how space weather affects our electronic infrastructure are examples of the wide range of ways that research using the Central Laser Facility (CLF) and ISIS can help to keep us safe. • Improving airport scanners CLF science has resulted in the emergence of novel security applications that benefit society across the globe. Our spin-out company, Cobalt Light Systems, has developed equipment for the non-invasive analysis of materials. Based on a laser spectroscopy technique developed and patented in the CLF, this new technology has wide-ranging applications – particularly in the area of security. By rapidly and accurately measuring the chemical composition of a substance without touching it, liquid explosives can quickly be detected through opaque packaging. This could bring an end to the ban on liquids in hand luggage on flights. Cobalt Light Systems Limited have announced they’ve won the contract to supply their Liquid Explosive Detection Systems (LEDS) to all five terminals at Heathrow, and to Glasgow, Aberdeen and Southampton Airports. The CLF’s Vulcan and Gemini lasers are also being used to develop compact, flexible and tuneable sources of high energy X-rays and gamma rays. The short bursts of radiation created by focusing a super high-powered laser onto a small target could, in future, be used to screen large, mobile containers at UK ports. • Protection from extreme space weather STFC scientists are leading research to understand and mitigate the impact that space weather could have on UK infrastructure. We are constantly being bombarded by a shower of subatomic particles from space, the intensity of which is affected by space weather such as solar flares. Most particles pass safely through the Earth without us noticing, but our increasing reliance on microelectronic devices makes it a cause for concern. In single event upsets, subatomic particles strike electronics and cause them to malfunction. The challenge is to understand how silicon chips respond to neutron bombardment, which is the first step in determining what mitigating action needs to be taken. We’re constructing a dedicated instrument, CHIPIR, for testing the effects of neutrons on microelectronics, which should be ready for use early next year. A group from Vanderbilt University have been using the muon facility at ISIS to investigate whether these more exotic particles could also cause problems, and the Space Weather Research Network (SEREN) is bringing together scientific research and applications from across the UK to build a virtual UK space weather centre. It will be looking into the impacts on: Power grids, Aviation, Satellite navigation, Communications, and The tracking and navigation of space craft. 2. Healthcare Lasers have wide-ranging roles in healthcare, from fundamental biomedical research investigating the processes underlying health and disease, to the use of lasers for disease diagnosis and treatment. Work at ISIS is helping people breathe more easily, as well as working towards improved radiotherapy treatments for cancer patients. • Working towards personalised treatments The Central Laser Facility (CLF) at the Rutherford Appleton Laboratory is home to the Octopus system, developed and built by STFC with funding from the BBSRC (the Biotechnology and Biological Sciences Research Council). Octopus combines multi-coloured lasers with advanced microscopy techniques to build up a unique picture of the proteins and molecules inside a patient’s cells that are causing disease. By tagging these ‘misbehaving’ proteins and using lasers to illuminate them, scientists can see the molecular interactions behind the disease. This complex picture, which is unique to every patient, is being studied with the ultimate aim of developing tailored drug treatments that will increase the efficiency of therapies whilst reducing side-effects and preventing the development of drug resistance. • Developing new technologies for hospital use Experiments using the CLF’s Gemini laser are bringing us closer to ultra-compact, laser-driven particle accelerators small enough to be installed in hospitals, where they can be used for particle beam cancer therapy. We’re also investigating laser-driven X-ray beams for diagnosis and in-situ imaging during treatment. • Neutrons could help us breathe more easily Coughing, wheezing, and an uncomfortable tightening of the chest are some of the unpleasant symptoms asthma sufferers will recognise, which are often at their worst in cities during the summer. One of the causes of these symptoms is ozone. An increase in the morbidity rates associated with ozone concentration and respiratory problems has sparked interest in the scientific community. A team from Birkbeck College in London are using ISIS to look at how ozone attacks the lipid molecules in lung surfactant – the body’s first line of defence. Neutrons are the perfect tool for this research, as they allow visualisation of interfaces at the molecular level. Results from these studies could lead to a better understanding of how to help people who have problems with their lung surfactant - including premature babies - and to the development of new inhalers for asthma and cystic fibrosis sufferers. 3. Environment Climate change is one of our most immediate challenges, with deforestation and our use of fossil fuels raising the concentration of greenhouse gases in the Earth’s atmosphere. Specialist laser techniques in use at the CLF allow us to see and capture microscopic objects, and to understand more about our environment. Neutrons from ISIS allow us to study chemical processes in the atmosphere and develop new carbon-storage techniques. • Getting a grip on clouds Scientists using laser beams as ‘tweezers’ can levitate and move individual micro-droplets of the kind that make up clouds, which allows us to study these delicate objects under a microscope or in an X-ray beamline. Scientists think that the ability of clouds to absorb and reflect heat has a substantial impact on climate change, and it is therefore essential for us to understand the complex chemistry that occurs within them. Dr Martin King and his team from Royal Holloway, University of London, have been using the CLF and ISIS to look at the effect pollutants have on cloud droplets. With large numbers of people cooking in cities, the cooking oil that vaporises can cause an oily layer – a surfactant film – to form on cloud droplets. Surfactant films affect every aspect of cloud dynamics, from the size of the water droplets to whether or not rain falls from the cloud. But surfactant films oxidise in the atmosphere, and Dr King’s team is interested in the rate of these reactions. By mimicking their behaviour under controlled laboratory conditions, we can reveal how these and other pollutants, such as those caused by burning fossil fuels, affect the formation and growth of droplets. Understanding this fundamental atmospheric chemistry will allow us to produce more accurate cloud models. • Capturing greenhouse gases We've been using ISIS to study a new material with the potential to revolutionise the capture of green house gases. The materials currently in use generate toxic by-produces, and are energy intensive to produce. A group from the University of Nottingham has developed a prorous material called NOTT-300 that captures carbon dioxide within a molecular cage, so that the gas can be safely removed from the environment. 4. Energy We're developing advanced solutions to the global energy challenge, including using lasers in the CLF to study fusion and solar energy. Another option is to use carbon dioxide and hydrohen to make a synthetic petrol substitute, and scientists at ISIS are working on ways to improve this process. • Harnessing the power of the Sun We've know for a while now that nuclear fusion-- the process that powers the Sun-- could provide an inexhaustible supply of clean, safe energy. Scientists here on Earth are trying to replicate the fusion process by using lasers to fuse together the nuclei of hydrogen isotopes, which releases huge amounts of energy. Just one cubic kilometre of sea water contains enough of the hydrogen isotopes deuterium to provide more energy than the world's oil reserves. With no greenhouse gas emissions, and a freely-available source of fuel, fusion could address our future energy needs. Understanding extremely high-temperature and high-density physics is key to fusion research, and we use high-powered lasers such as Vulcan to create these conditions. Elsewhere in the CLF, we're using the Ultra system to investigate photoactive proteins-- light-driven nanomachines designed to be robust or readily replaceable. We expect these nanomachines to form an important part of solar energy driven nanoscale devices, and this work underpins solar energy research. • Developing alternatives to oil We know that supplies of fossil fuels will run out, but what if it was possible to make oil? Syngas (or synthesis gas) is a mixture of carbon dioxide and hydrogen, which can be converted into petrol and diesel via a process called Fischer-Tropsch catalysis. The carbon dioxide used can come from any source, including biomass, coal and methane – making the process very flexible. The reaction relies on the use of catalysts, which are often iron-based as iron is readily available. Inside reactors, the transformation from the iron-based precursor to the active catalyst is highly complex, and scientists using the TOSCA instrument at ISIS studied samples from a working plant to investigate whether the composition of the catalyst can be influenced to improve the production process.
Last Modified : 2015/06/24