跳到主要內容
訪客人次:462970
:::
訪客人次:462970
:::
:::

【科技部新聞稿】太陽能材料雷射大突破‒更輕薄、更節能、更耐用,臺灣研究團隊為首之跨國團隊研發關鍵應用 / The Last Mile Towards Electrically Driven Perovskite Lasers

太陽能材料雷射大突破‒更輕薄、更節能、更耐用

臺灣研究團隊為首之跨國團隊研發關鍵應用

日期:110年3月9日

發稿單位:自然科學及永續研究發展司

聯絡人:郭廷洋助理研究員

電話:(02)2737-7465

 Email:tykuo@most.gov.tw

在科技部計畫的支持下,國立東華大學物理系暨光電系賴建智教授領銜主導,與國立東華大學物理系馬遠榮教授、國立海洋大學光電系羅家堯教授以及洛杉磯加大(UCLA)電機系劉佳明教授,合組跨領域研究團隊,歷經兩年研究,成功找到關鍵技術,將太陽能材料、雷射與半導體積體電路(IC)整合,成為更輕薄、節能、平價製作成本及可規模化量產塗佈製程的雷射元件,並獲登於今(110)年2月國際頂尖學術期刊《先進材料》(Advanced Materials)。

近年,能源與積體電路產業日新月異,新興太陽能源材料–鈣鈦礦與光纖元件,在綠能與積體光學晶片分別扮演關鍵角色。由於節能與微小化趨勢,鈣鈦礦與光纖平台的整合,被視為下世代全光化積體電路之重要目標。目前全球積體電路製作已邁入數個奈米以下之微小製程,由此可見,實現低能耗與微型化光纖雷射勢在必行。

然而,多數鈣鈦礦雷射因天生散熱性較差,僅能於低溫運作,無法相容於室溫下操作的全光化積體電路,且有違節能願景;再者,多數鈣鈦礦雷射仰賴昂貴脈衝雷射驅動,相較於微型光纖元件,脈衝雷射驅動代表大體積與高維護成本,在與IC平台整合上,困難度大增。

該研究團隊在科技部補助之物理系所研究特色發展計畫及相關個人計畫鼎力支持下,率先提出以平價低製作成本、簡易且可量產塗佈法,將奈米級鈣鈦礦披覆於具原子級平整度之高品質單晶光纖上。在室溫下實現極低能耗太陽能材料雷射,一舉突破科學界多年來所侷限瓶頸,為全球所創。此外,搭配奈米尺度檢測,解開單晶光纖本身高導熱係數與兼具微型共振腔等特性,顛覆以往科學界對鈣鈦礦熱不穩定性和必要脈衝雷射光驅動之認知,並大幅縮小雷射體積至比人類頭髮直徑更細小的單晶光纖上,有效融合光纖波導的光學特性和鈣鈦礦材料的增益特性。在未來跨領域的應用上,還可透過改變鈣鈦礦材料之成份,進一步得到多波長輸出的光纖雷射,這將大幅降低製備積體光學晶片的複雜度與門檻。

上述多項成果的突破性貢獻,不僅彰顯臺灣雷射技術領先全球,亦可滿足下世代全光化積體電路更小、更節能之必要需求,為能源材料與半導體IC整合取得先機。此研究展現在基礎科學研究上的超前布署,將有極大潛力加速未來積體光學晶片的發展與應用。

 

論文名稱及連結:〈Ultralow-Threshold Continuous-Wave Room-Temperature Crystal-Fiber/Nanoperovskite Hybrid Lasers for All-Optical Photonic Integration〉
https://doi.org/10.1002/adma.202006819

 

研究成果聯絡人

賴建智 副教授

國立東華大學物理學系(所)

電話:03-8903000 ext. 3738

Email:cclai@gms.ndhu.edu.tw

 

The Last Mile Towards Electrically Driven Perovskite Lasers

Ultracompact and low-cost perovskite laser with low energy consumption is an ultimate goal for monolithic all-optical integration. The cross-country group headed by Prof. Chien-Chih Lai (Department of Physics and Department of Opto-Electronic Engineering, National Dong Hwa University), which includes Prof. Yuan-Ron Ma (Department of Physics, National Dong Hwa University), Prof. Chia-Yao Lo (Department of Optoelectronics and Materials Technology, National Taiwan Ocean University), and Prof. Jia-Ming Liu (Department of Electrical and Computer Engineering, UCLA), confirmed that the key is the development of the crystal-fiber/nanoperovskite hybrid architecture. This excellent achievement was published in the top journal ⟪Advanced Materials⟫ in February 2021.

Recently, green energy and on-chip photonics have been two of the fastest growing fields in science and technology. Metal-halide perovskites and fiber-based devices are both integral to the development of next-generation energy materials and all-optical photonic circuits. A leading-edge 5 nm complementary metal oxide–semiconductor platform was demonstrated by Taiwan Semiconductor Manufacturing Company with a large production batch. This success is expected to be extended to all-fiber photonic integration, thus realizing continuous-wave perovskite lasers in a fiber configuration is imperative.

However, because of the well-recognized air and thermal instabilities of perovskites, laser action in a perovskite has mostly been limited to either pulsed or cryogenic-temperature operations. They have the shortcomings of significant complexity, high cost, and complicated setup, which do not meet the criteria of green energy. Pulse pumping also implies that the system is larger than existing fiber devices, requires more hands-on maintenance, and is less reliable, thus increasing the complexity of integration with silicon microelectronics.

With the strong support from the Ministry of Science and Technology (MOST), the joint research team has successfully developed the first realization of a direct diode-pumped ultralow-threshold continuous-wave room-temperature perovskite laser, which can be easily fabricated by coating MAPbI3 nanocrystallites onto a high-quality YAG crystal fiber. The atomically smooth crystal fiber not only serves as a perfect microcavity for ultralow-loss optical resonance but also facilitates heat dissipation toward robust laser devices, outperforming previously reported structures. Additionally, with the demonstration of this device on crystal fibers, the proposed and demonstrated approach relieves the constraints imposed by thermal instability and the pulsed pumping requirement. Moreover, this hybrid device is expected to be promising for color-tunable crystal-fiber-based perovskite lasers that are much simple and cost-competitive for monolithically on-chip silicon integration.

In light of this, the result thus foregrounds the prospect of electrically driven lasers for all-optical photonic integration. In the hope that by the breakthrough from this project, we can discover frontiers among the vigorous pace in fundamental science around the world; and further contribute to the energy materials and semiconductor communities in Taiwan.

 

 

Media Contact:

Professor Chien-Chih Lai

Department of Physics, National Dong Hwa University

+886-3-890-3000 ext. 3738

cclai@gms.ndhu.edu.tw

 

 

Dr. Ting-Yang Kuo

Program Manager/Assistant Research Fellow,

Department of Natural Sciences and Sustainable Development,

Ministry of Science and Technology

+886-2-2737-7465

tykuo@most.gov.tw

 

 

更新日期 : 2021/04/05