跳到主要內容
訪客人次:462971
:::
訪客人次:462971
:::
:::

【科技部新聞稿】「自然啟發」+「人工智慧」開發更輕、更強、更韌的仿生結構材料 / Inspired from Nature and Optimized by A.I.― Lighter, Stronger, Tougher Bio-inspired Structural Materials

「自然啟發」+「人工智慧」
開發更輕、更強、更韌的仿生結構材料

日期:110年3月24日

發稿單位:工程技術研究發展司

聯絡人:王宇豪助理研究員

電話:02-2737-7526

 Email:yuhwang@most.gov.tw

 

材料科學與工程發展迄今,面臨許多瓶頸,如難以兼具輕量化、高強度與高韌性,常需在性質與材料選擇間做取捨;而有效連接不同材料(如金屬和高分子)仍是困難的挑戰。這些問題或許可在一種常見於美國西岸乾旱地區的惡魔鐵鎧甲蟲(Diabolical Ironclad Beetle)身上找到解方。國立清華大學陳柏宇教授獲國際頂尖期刊《自然》(Nature)1邀請,從材料科學工程的觀點,撰寫科普性的新知評論(News & Views)介紹美國加州大學爾灣分校與普渡大學團隊對惡魔鐵鎧甲蟲超耐壓外殼所做的研究。這些新知與陳教授致力的研究互相契合,都是師法自然,用以啟發更輕更強更韌的仿生結構材料。

這種其貌不揚的甲蟲身懷絕技,堅硬的外殼讓它幾乎沒有天敵,能活7到8年,踩不扁、捏不碎、大頭針無法刺穿、被汽車輾過還能存活,可承受3.9萬倍其體重的壓力。鐵鎧甲蟲的外殼其實不含鐵或礦物質,和其他昆蟲一樣由幾丁質和蛋白質所組成。其超抗壓能力源自兩種關鍵的結構設計:(1)具功能梯度『剛柔並濟』的側向支撐:前段緊密契合可保護重要的內臟器官;而中段和後段在受壓時可產生局部或大幅度的變形,有助鑽進石縫躲藏或樹皮間隙中覓食。(2)拼圖狀的榫接結構將翅鞘緊密相連,其層狀的微結構受力時,層與層間形成微小裂縫,造成體積膨脹,使突起與凹槽扣鎖得更緊密,可大幅提升韌性與可靠度。此發現可望解決不同材料的接合處因應力集中於較窄的頸部,造成脆性斷裂而提早失效的問題,可應用於航太、機械工程、建築等領域。

惡魔鐵鎧甲蟲只是自然界眾多具優異性能的範例之一,陳教授曾研究貝殼、螃蟹殼、鹿角、羊角、巨嘴鳥喙、鳥羽、鯊魚/食人魚牙齒、魚鱗、鱷魚/犰狳冑甲、眼鏡蛇蛋殼、烏賊骨板等生物材料,發表於Science等期刊並著有仿生材料教科書。陳教授表示,有別於人造材料之性質常取決於材料選擇,生物材料最擅長的是結構設計,常用的策略則是「減法」和「乘法」,高效運用有限的材料達到輕量化並藉由不同尺度結構間的強化/增韌機制大幅提升性質與功能。然而,其複雜的多階層結構使仿生材料的製程困難度提高,成本大幅增加,限制其發展應用。如何找出關鍵而可行的最佳化結構設計,跳脫「仿」生的框架,邁向生物「啟發」的新思維,人工智慧扮演重要的角色。

目前陳柏宇教授與台灣大學土木系、應力所和成功大學工科系跨領域團隊合作,執行科技部工程司智慧仿生材料與數位設計平台專案計畫―『利用仿生及材料基因數位技術平台設計並開發具優異機械性能之創新輕量化結構材料』並擔任總主持人,整合多階層結構分析、機械性質量測、多尺度模擬、人工智慧、機器學習、3D列印與功能驗證,有系統的研究多種兼具優異機械性質的生物材料,如由貝類珍珠層微觀結構啟發,透過機器學習設計具高韌性的複合材料2、由楓香果實啟發,設計超輕量、高強度的孔洞材料3、由甲蟲外殼啟發,開發耐衝擊、高能量吸收的螺旋梯度結構、由蜻蜓翅膀啟發,利用基因演算法生成輕、強、韌的二維材料等。

研究團隊致力於建構生物材料結構與性質資料庫並開發材料性質預測系統與材料設計平台,本研究之衍生技術「整合人工智慧與材料基因技術之仿生輕量化結構材料設計平台」榮獲科技部「2019未來科技突破獎」,並獲選為11個全球首創的亮點技術之一。目前應用實例包括利用AI設計具仿生微結構的鞋中底,可針對回彈、支撐、緩衝等性質需求進行區域化/客製化設計並以3D列印一體成形,突破傳統鞋中底難以兼顧不同功能需求的限制。整合仿生結構設計、人工智慧與金屬3D列印技術,開發可調控孔隙率、微結構與機械性質的新型輕量化醫用合金,可應用於人工椎間盤、骨材等生醫領域。此外,此技術可應用於自行車、汽車、航太、智慧機械等產業。綜言之,整合「生物啟發」、「人工智慧」與「先進製造」可望突破現有結構材料之瓶頸與限制,創造無限可能。

 

研究成果聯絡人

陳柏宇教授

國立清華大學材料科學工程學系(所)

電話:03-5715131分機33889、33896

      0975-696027   

Email:poyuchen@mx.nthu.edu.tw

 

 

參考文獻

  1. P.-Y. Chen, “Diabolical ironclad beetles inspire tougher joints for engineering applications” Nature 586, 502-504 (2020).

    文章連結https://www.nature.com/articles/d41586-020-02840-1

  2. A, Ghimire, Y.-Y. Tsai, S.-W. Chang, P.-Y. Chen, “Tunable interface hardening: Designing tough bio-inspired composites through 3D printing, testing, and computational validation” Composites Part B (2021) in press.

  3. Y. Chiang, C.-C. Tung, X.-D. Lin, P.-Y. Chen, C.-S. Chen, and S.-W. Chang, “Geometrically toughening mechanism of cellular composites inspired by Fibonacci lattice in Liquidambar formosana” Composite Structures 262, 113349 (2020).

 

 

Inspired from Nature and Optimized by A.I.

― Lighter, Stronger, Tougher Bio-inspired Structural Materials

Innovation Research Made in Taiwan

 

Natural materials, which have risen from billions of years of evolution, have developed unique characteristics, such as hierarchical structures, multi-functionality, self-assembly at ambient temperature and pressure, capabilities of self-healing and environmental adaptation. Distinct from engineering materials, which are unable to perform both lightweight and high strength; high stiffness and high toughness, biological materials are often composites which possess remarkable mechanical properties, combining lightweight, high strength and high toughness owing to strengthening and toughening mechanisms from nano-, micro-, meso-, and macro-scales.

One intriguing example is the diabolical ironclad beetle armored with tough exoskeleton which can protect it from predators, being pinned by needles and even being run over by cars. Prof. Po-Yu Chen from Department of Materials Science and Engineering at National Tsing Hua University was invited to wrote a News & Views article for Nature [1], elucidating the strategies utilized by the ironclad beetles. The secrets lie in the layered, jigsaw-like joints between hardened forewings (elytra) and a series of functionally graded support structures connect the elytra and ventral cuticle. The findings inspire novel designs for armored vehicles, crush-resistant robots, and tougher, more reliable joints between different materials. Prof. Chen have studied a wide variety of natural materials, such as mollusk shells, crab exoskeletons, elk antlers, ram horns, toucan beaks, feathers, shark/piranha teeth, alligator/armadillo armors, snake/turtle shells, and published several highly cited journal articles and a textbook in this field. He pointed out that instead of materials selection, biological materials often achieve their superior performance and functionality through structural designs at varying hierarchical levels. However, the complex hierarchical structures of biological materials make them difficult to be fabricated and therefore limit the engineering applications. “A.I. plays a critical role in finding out the key structural features and accelerating the development of novel bio-inspired materials.”     

Prof. Chen and collaborators from National Taiwan University and National Cheng Kung University further utilize multi-disciplinary approaches — integrating advanced structural characterization, mechanical testing, simulations, artificial intelligence, machine learning, and 3D printing — to further understand the structure-property-function relationships of a wide variety of natural materials and develop novel materials with superior mechanical performance. This research project titled “Design and Development of Novel Lightweight Structural Materials with Superior Mechanical Performance by Bio-inspiration and Materials Genome Initiative” is supported by Department of Engineering and Technologies, Ministry of Science and Technology.

Inspired from the brick-and-mortar microstructure of abalone nacre, we apply AI and machine learning to generate thousands of patterns made of hard and soft materials with a fixed ratio and select those exhibit tough mechanical performance for 3D-printing. Improved from the traditional brick-and-mortar structure, we find that the bow-tie structures with interlocking mechanism can significantly enhance both toughness and strength.[2] Learning from the lightweight yet strong Liquidambar formosana fruits, we design a series of porous materials with various hole arrangements and find that the bio-inspired Fibonacci structures possess superior mechanical properties than other regular structures.[3] Inspired from the exoskeleton of beetles, we fabricate helical/gradient structures which are impact resistant with high energy absorbent. Mimicking dragonfly wings, we utilize genetic algorithm approach to generate voronoi-like 2-D structures which are lightweight and flexible, in the meantime, exhibit improved toughness and strength.  

Additionally, we are establishing database of structures and properties of natural materials, developing a prediction system of material properties based on given structures and a platform that can design optimized structures based on required mechanical properties. This technique titled “Generation of Bio-inspired Lightweight Structures by Integrating Artificial Intelligence and Materials Genome Initiative” received the MOST FutureTech Breakthrough Award and highlighted as one of the 11 word leading technologies. Two selected applications are bio-inspired/AI-modified shoe midsoles with multi-functionalities (elasticity, support, cushion) and customized designs and lightweight porous metals/alloys for artificial bones and discs. Inspiration from Nature, optimization by AI/Machine Learning, and realization by advanced manufacturing can accelerate the development of novel structural materials with superior mechanical performance and lead to wide industrial applications, including bicycles, automobiles, aerospace, intelligent robots, biomedical materials and assistive devices.

 

References on International Publications:

  1. P.-Y. Chen, “Diabolical ironclad beetles inspire tougher joints for engineering applications” Nature 586, 502-504 (2020). doi: 10.1038/d41586-020-02840-1

    Link: https://www.nature.com/articles/d41586-020-02840-1

  2. A, Ghimire, Y.-Y. Tsai, S.-W. Chang, P.-Y. Chen, “Tunable interface hardening: Designing tough bio-inspired composites through 3D printing, testing, and computational validation” Composites Part B (2021) in press.

  3. Y. Chiang, C.-C. Tung, X.-D. Lin, P.-Y. Chen, C.-S. Chen, and S.-W. Chang, “Geometrically toughening mechanism of cellular composites inspired by Fibonacci lattice in Liquidambar formosana” Composite Structures 262, 113349 (2020). doi:10.1016/j.compstruct.2020.113349

     

    Media Contact:

    Professor, Po-Yu Chen

    Department of Materials Science and Engineering, National Tsing Hua University

    +886-3-5715131 #33889

    poyuchen@mx.nthu.edu.tw

     

    Program Manager, Yu Hao Wang

    Department of Engineering and Technologies, Ministry of Science and Technology

    +886-2-27377526

    yuhwang@most.gov.tw

更新日期 : 2021/03/26