Go to the content anchor
Visitor:110056
:::
Visitor:110056
:::

Research Themes

The Mathematics Division of the MOST plays a key role in promoting and supporting the mathematics research in Taiwan. The mathematics review panel is the core of the Mathematics Division, currently divided into two subpanels – pure mathematics panel and applied mathematics panel. Each panel consists of 5 committee members, who are leading researchers in their respective fields in Taiwan. The missions of the review panel include: (1) in charge of reviewing all submitted research proposals and other related applications; (2) introducing and promoting the cutting-edge frontier research directions to the mathematical community; (3) identifying some top-down main themes proposals to the community; (4) assisting other MOST reviewing activities.

 

The research topics of pure mathematics group mainly cover the following areas:

1. Algebra: group theory, ring theory and non-associative algebra, Lie algebra, commutative algebra.  

2. Number theory: algebraic and analytic number theory, arithmetic geometry, group and automorphic representation.

3. Geometry and topology: topology, differential geometry, Lie groups, algebraic geometry.

4. Analysis: functional analysis, harmonic analysis, complex analysis, optimization theory.

5. Differential equations and dynamical systems (partial): ordinary differential equations, partial differential equations, dynamical systems.

 

The research topics of applied mathematics group mainly covers the following areas:  

1. Differential equations and dynamical systems (partial): ordinary differential equations, partial differential equations, dynamical systems.

2. Probability theory and applications: probability theory and stochastic processes, stochastic processes, stochastic analysis and mathematical physics, mathematical finance, applied probability.

3. Discrete mathematics and combinatorics: graph theory, combinatorics.

4. Numerical analysis and scientific computing: numerical analysis, matrix computation and applications, numerical methods for partial differential equations, computational fluid dynamics, high performance computing.

 

5. Interdisciplinary mathematical sciences: optimization methods and applications, image processing, biomedical engineering, modeling and simulation of biological systems.     

Last Modified : 2017/09/21